

HEI-003-020103

Seat No.

M. Sc. (Physics) (Sem. I) (CBCS) Examination December - 2017

CT-3: Quantum Mechanics - I

Faculty Code: 003 Subject Code: 020103

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70 Instructions:

- (1) Attempt all questions.
 - (2)All questions carry equal marks.
 - (3)Assigned marks are given on R.H.S.
- Mathematical symbols have usual meanings. (4)
- 1 Answer in brief any seven:
 - In the solution of one dimensional harmonic oscillator 2 in quantum mechanics why $u(\xi) = h(\xi) \exp\left(\frac{\xi^2}{2}\right)$ is not used?
 - Draw the eigen functions for H_0 and H_1 , where n = 0 2 and n=1, respectively.
 - (c) Draw the polar diagram for $\ell = 0$, m = 0 and $\ell = 1$, m = 0. 2
 - (d) Define Hilbert space. 2
 - What is trial wave function? How it is selected? 2 (e)
 - Name the phenomena experiencing the time 2 (f) independent perturbation.
 - Draw the highly peaked function 2 (g) $\sin^2\left[\left(w_{mi}\pm w\right)t/2\right]/\left[\left(w_{mi}\pm w\right)/2\right]^2$ and prove timeenergy uncertainty principle.
 - Why WKB approximation is known as semi-classical 2 (h) approximation?
 - 2 (i) In the separable variable method to solve Schrödinger equation in polar coordinates which variables are separated? Explain in brief without derivation.

- 2 Answer any two:
 - (a) Solve the one-dimensional harmonic oscillator problem $using \frac{d^2h}{d\xi^2} 2\xi \frac{dh}{d\xi} + h(\xi 1) = 0$
 - (b) Using suitable form of a and a^+ prove that $H = \hbar w \left(a^+ a + \frac{1}{2} \right)$
 - (c) Compare quantum harmonic oscillator with classical oscillator using necessary plots.
- 3 (a) In spherical polar coordinates, if $\nabla = e_r \frac{\partial}{\partial r} + e_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + e_\phi \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \text{ and}$ $e_z = e_r \cos \theta e_\theta \sin \theta \text{ then obtain the relations for}$ $\overrightarrow{L}, L_z, \text{ and } \overrightarrow{L}^2.$
 - (b) Prove the following relations of angular momentum operators:
 - (i) $\left[J_z, J_+\right] = \hbar J_+$
 - (ii) $\begin{bmatrix} J_+, J_- \end{bmatrix} = 2\hbar J_z$
 - (iii) $J_{-}J_{+} = J^{2} J_{z}^{2} \hbar J_{z}$.

OR

3 (a) From the angular part of Schrödinger equation in polar coordinates of the given form

$$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial y}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 y}{\partial \phi^2} + \lambda y = 0. \text{ Obtain separate}$$

equations for θ and ϕ .

(b) Solve the attractive Coulomb potential case using radial equation.

- 4 Answer any two:
 - (a) Discuss WKB approximation in detail. 7
 - (b) Explain the first order time independent perturbation 7 theory and obtain the criterion for the smallness of perturbation.
 - (c) In the time independent perturbation theory using an anharmonic oscillator having Hamiltonian

$$H = \frac{p^2}{2m} + \frac{1}{2}kx^2 + ax^3 + bx^4$$

Show that the perturbation shifts the ground state to

higher level by the amount of $\frac{3}{4}b\left(\frac{\hbar w}{k}\right)^2$.

- **5** Write notes on any **two**:
 - (a) Fermi's golden rule 7
 - (b) Spherical harmonics 7
 - (c) Variation method 7
 - (d) Raising, lowering and number operators. 7